
AR-192 M± APPROXIMATIONS AND OPTIMAL CONTROL FOR THE PATHWISE 1/1
AVERAGE COST PER UNIT..(U) BROWN UNIV PROVIDENCE RI
LEFSCHETZ CENTER FOR DYNAMICAL SYSTE. H J KUSHNER

UNLRSFIDJAN 88 LCDS/CCS-99 3 AFOSR-TR-88-0394 F/G 9/11 L



L4.5
N IL&L. _ _

AU L36 .2_

111.8
]IJIL25 LA 1 ll-.



UNCLASSIFIED

*.SaISCUIv CLASPICAIO1S OP TOMS FAGE (§b Dft. AnaE -

REPORT DOCUJMENATION PAGE M UNITU~flOI___

TIC~ea ubuso - Lov rcaaat OF Mwcoorj CA OW1111 COERE

Approximations and Optimal Control for the Path- [Lq e
wise Averagie Cost per Unit Time and Discounted 6.enmuaOMlt =Gj
Problems for Wideband Noise Driven Systems

S 7. AU TNoR(.) S. CONTRACT Olt GRAM? NMM11911fs

of"" Harold J. Kushner AFOSR-85-0315

S. PERFORMIUNG ORGANIZATION MNAMC ADDRESS 10. PROGRAM 61.0110T. PROJECT. TASKCI LefSChetz Center for Dynamical Systems ARE9A & WORK UNI1T NUMBERS

0 Division of Applied Mathematics I0 *Brown University, Providence, RI 02912 1OIZ~ .730/Al
i. ComorROLLING OFFICE NAME AND ADDRESS IL. REPORT DATE

Air Force Office of Scientific Research January 1988
- Boiling Air Force Base (YVN IL. NUMBER OF PAGES

is~gon-nC ?11?30
R.MN OING AGENCY NAME & AOORESW(I difflaen m* ft Controllin CfIVICS) 1S. SECURITY CLASS. (at VM* topeet)

Unclassified
'C M0 ~sIS54 OCCL ASS# FICATION/ DOWNGRAING

SCHEDULE

16. ISTIBUTON TATEENT*# tle~pon

* Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of thn. abstract .hto*4 in Stock 20. it differeat how Reot

20. ABSTRACT (Continue. an tovao sidd. It noceeyoW identify by block numobui)

INCLUDED

DO N , 73 01COPINV6ISOOLT UNCLASSIFIED
S/N 0102- IJ. 014-6601 SECUITY CLAMSPICATION Of THIS PA49 (1111a a.. E.

......................................................... %.



I IA I a

0 W

Cete fo Conro Sciece



APPROXIMATIONS AND OPTIMAL CONTROL FOR THE

PATHWISE AVERAGE COST PER UNIT TIME AND

DISCOUNTED PROBLEMS FOR WIDEBAND NOISE

DRIVEN SYSTEMS

by
Harold J. Kushner

January 1988 LCDS/CCS #88-3

Acoossion For
NTIS GRA&I
I)IC TAB
Unauziouned 03
Justiflioat in

By ..

Distributlon/

Availability Codes
Avai _ and/or

Dit Special

- - '-- -@U q'



APPROXIMATIONS AND OPTIMAL CONTROL FOR THE PATHWISE

AVERAGE COST PER UNIT TIMIE AND DISCOUNTED

PROBLEMS FOR WIDEBAND NOISE DRIVEN SYSTEMS

by

Harold J. Kushner

Lefschetz Center for Dynamical Systems
Department of Applied Mlathematics

Brown University
Providence, Rhode Island 02-912

This work was supported in part by Contracts AFOSR-85-0315,
ARO DAALO3-86-K-O 171 and ONR N00014-85-K-0607.



ABSTRACT

We consider the average cost per unit time problem for wide bandwidth

noise drivcn control systems, where the average cost is in the pathwise sense;

no expectations are used. Let t - time of control and BW - bandwidth. For

our class of processes, we prove various uniformity properties for the

convergence of the pathwise average costs as t -. -, BW -. =. Let u 6(.) be a

smooth 5-optimal control for the limit controlled diffusion (the limit as BN' -

-) for the (mean) average cost per unit time problem. We show that for large

enough t and BW, ur(.) is 26-optimal (with a probability arbitrarily close to

1) for the pathwisc wide bandwidth problem. This uniformity is important in

applications, for we often have only one long sequence to control, and the

expectation is inappropriate. Also, otherwise, as BW , it might take longer

and longer to well approximate the limit pathwise average cost. Applications

to related 'pathwise average' problems are given: the convergence of the

average pathwisc errors for an 'approximate' non-linear filter with wide

bandwidth observation and system driving noise, and the convergence and

accuracy of Monte Carlo calculations of Liapunov exponents for wide

bandwidth noise driven systems (as BW - -) via average cost/unit time

methods. It is also shown for the discounted cost problem that the optimum

pathwisc costs converge to the minimum average cost per unit time as both

the discount factor goes to zero, and BW -..

Key words: pathwise average cost per unit time, ergodic control,
approximations of ergodic control, wide band noise driven systems,
approximate non-linear filtering, Liapunov exponents, discounted cost.
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1. Introduction

IAAvcragc cost per unit time (over an infinite time horizon) optimal control

problems for diffusion and other Markov models have been dealt with in

various w We treat such a problem for 'wideband

noise driven' and related systems, which are 'close' to a diffusion, and when

the average is in the pathwise but not necessarily in the mean value sense.

The gencral method works for many other classes of processes which are

suitably approximatcd by an appropriate controlled Markov process. As
C -----2

pointed out below and in Sections 4 and 5, the results have applications to

many other problems where pathwise averages are important, and the noises

are 'wide band'. E.g., in Section 5, we treat the problem where both BW

and discount fac or - 0.

Let thc diffusion model be given in the relaxed control form (1.1), where (
b(.,.) and o(.) are continuous (other conditions will be listed below) and mr(.) is

an admissible relaxed control [1), [3], [4], over a compact control value space U.

The relaxcd control might be of the feedback form. The precise definition is in

the Appendix. We note here that m,(.) is a measure over the Borel sets of U.

(1.1) dx = f b(x,-x)m(da)dt + o(x)dw.

In [11, relaxed controls were used to get nearly optimal controls for several

'wideband' noise driven systems, and in 13], they were cleverly used to get an

'occupation measure' for the state-control pair which ultimately allowed the

authors to demonstrate the existence of an optimal stationary control. These

advantages also occur for the particular problems to be described below. In

[1], [2), the cost of concern was ([2] did not use relaxed controls)

VI
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(1.2) li r ' Ek(x(t),a)m,(dc) - im),
IT0

for a bounded continuous k(.).

In practice, of course, one does not have a process which is a diffusion,

and it is of considerable interest to consider wide bandwidth noise driven

systems of the form

(1.3) xE = f b(x',a)mt(da) + FE(x',{t)

where t(.-) is the wide bandwidth noise. We use the scaling tE(t) = t(t/c)

for an appropriate 'mixing' process t(-) owing to its convenience in

simplifying the details. But it should be clear that the method is of fairly

general applicability. Reference [1] dealt with a system of type (1.3) (with

weak limit of type (1.1)) and cost of the form (1.2). It was shown, under the

conditions there that for any 6 > 0, a smooth 6-optimal control u 6 for (1.1),

(1.2) was also 'nearly' optimal for (1.3) and (1.4), for small c.

(1.4) F1 i- -f Ek(xE(t),g)mt(dc) = '(m)
TT 0

i.e., lim ((mE) ) lim 7E(uB) - 5 for any sequence mE.

Such results are helpful in justifying the use of the ideal limit process (1.1)

for use in control theory.

In 13], Borkar and Ghosh showed the existence of an optimal feedback

control for the diffusion model (under this control the diffusion could be

taken to be stationary) and cost function (1.2), but with the E deleted -- a

pathwise result. This paper is devoted to a related problem for the model

(1.3). Define

p ~ p~q "
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(1.5) "TT(m) T-"k(x(s),A)m (da), 7(m) = Jim TT(m),

T 0 T

(1.6) 74(m) = I k(x((s),a)m,(da).

T T 0

If m(-) is equivalent to a classical control function u(.), we write u in lieu of

m in 7T(m), etc. The 'pathwise' convergence result in [3] is of particular

importance in applications, since one often has a single long realization, and

then the expectation is not appropriate in the cost function. The results

in [3] (under their conditions) give the existence of a feedback relaxed control

F(-) such that 7T(r) 7 = inf Jim 7 T (M) w.p.l.
m T

In our problem here, owing to the wideband noise and the appearance of the

two parameters E and T, w.p.l type convergence results are usually either

meaningless or impossible to obtain. Typically, in an application one has a

particular process with a given wide bandwidth driving force. One is interested in

knowing how well good controls for the 'limit' problem do on the actual physical

problem. The wide bandwidth driving term is imbedded into a sequence for

purposes of getting an approximation result, and w.p.1 type results might make

little sense.

Let ur(.) denote a 'nice' 6-optimal classical control ('nice' is defined in

the next section) for model (1.1) and cost function (1.4). Then we wish to

show (l.8a) and (l.8b):

(l.8a) "/(uO) P 7(u0), as c 0, T-*
(1.8b) lim P(/(m) 5(u6 ) - 6) = 1

for any sequence of admissible relaxed controls mE(.). Since the time

lip e
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derivative of I(m) is O(l/T) uniformly in c, m, wo, the convergence is

somewhat stronger than indicated by (1.8). Eqn. (l.8b) implies a type of

uniformity of convergence, since the way that e - 0 and T is not

important. Were this 'uniformity' not the case, it would be possible that as E

-. 0, a larger and larger T is needed in order to closely approximate the limit

value. In that case, the white noise limit (1.1) would not be useful for

predictive or control purposes, when the true model is (1.3).

In Section 2, we list several assumptions and prove (1.8). In order to simplify

the development, the technique of perturbed test functions from [51 is used. To

facilitate the calculations, some of the conditions will be adapted from those used

in that reference -- but many useful generalizations should be clear. In Section

3, we redevelop the result of Section 2, using a 'first order perturbed test function'

method, with less smoothness required on the functions and less mixing required

on the noise but more details required in the proof. Some extensions are

discussed in Section 4. The ideas of 'pathwise uniform' convergence of a sample

average cost per unit time has many other applications. For example in the

Monte Carlo evaluation of Liapunov exponents with wide bandwidth noise

coefficients for linear systems [6]. The formula for these exponents is of the

form of an average cost per unit time. For this problem, it is shown in Section 4

that the Monte Carlo evaluated pathwise average cost per unit time converges (as

E - 0, T - -) to the same limit that one would obtain were the actual limit

diffusion used for the evaluation. The limit depends only on the correlation

function of the noise t(.). Such a result is essential for the Monte Carlo method

to be useful, and for the Liapunov exponents of the limit system to be meaningful

10 ZO: 14 14

R bLLLT
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indicators of the behavior of the actual (wide bandwidth noise driven) physical

system.

An extension to a problem of average pathwise error per unit time for an

'approximate' non-linear filter for a system with wide bandwidth driving and

observation noise is also discussed in Section 4.

In Section 5, we treat extensions to the discounted cost case. Define the

pathwise discounted cost

V8(m) 13J eOS fk(xE(s),a)m,(da)ds,
0

and let mE(.) be a sequence of 6-optimal controls. We show that

(l.9a) V1(ur8) P- 7(ur), as 0 - 0, c - 0,

(l.9b) li P(V (mE) ; 7(u8 ) -) = l

The uniformity result is important, since we would not want the speed with

which 0 -. 0 to depend on the bandwidth - in order to get the proper

approximation. The sense in which me(.) is 61-optimal is left purposely vague

- since (1.9) holds for any (m6(.)), under the conditions below. Thus for

small C,8, u6(-) is always nearly optimal. There also are extensions to

impulsive and singular control problems.

Iv=

'.
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2. A Basic Convergence Theorem

For cornvenience in this section, wC usC the assumptions of [5, Chapter 4.6],

with appropriate modification for the relaxed controls. The system (1.3) will

take thc form

(2.1) =E f G(x ,co)mjda) + G0(xE,t6) + F(x",tE)/c.

(2.1) is a common way of getting a wide bandwidth noise driven system

[5,13,14]. Other forms for F(x,t)/E can be used. See, e.g., the examples in [5]

where the usc of perturbed test functions for weak convergence is illustrated.

We use either bounded noise or Gaussian noise. For the first case (A2.1) -

(A2.6) are uscd. The second case is covered by' (A2.10). Let EEdenote the

expectation, conditioned on kc(s), s ( t, and Ethe expectation conditioned on

c(s), s '< t.

A2.1. G(.), F(.,.), Go(.,.), F,(.,.) are continuous in (x,t). G0,.(-,t) jj

9cOntinuous in x for each t and is bounded. t(-) is bounded, right continuous P

and EG,(x,t) = EF(x,t) = 0.

A2.2. FX(-k is continuous for each t, and is bounded.

A2.3. Let V(x,0) denote either cG0(x,t), G,(x,t), F(x,t) 2r F,(x,t). Then

for compact Q,

Esup E( V(x,t(s))dst 0

in the mean souare sense, uniformly in t.

Let F1 denote the ith component of F.

A2.4. Therg arc continuous F ( ~ such that

d.
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ft EFi' X(x~(s))F(x,k(t))ds-

cEFi(xAl(s))F i(x,t (t))ds - ij(x)/2,

t

as t -. , and the convergence is uniform in any bounded x-set.

Dcfine a(x) = [Y(x) + 9"(x)].

A2.5. For each compact set Q,

sup j dT jds[E' F,' (x,E(s))F(x,k(T))xEQ J/ '

- k -- 0

s F dT [ds[E F(x,k(s))F '(X,k(T)) - EF(x,tk(s))F '(x,k(T))) 0
X C Jt/CS fT

in the mca. square sense as e - 0, uniformly in t. Similarly. when the

bracketed terms are replaced by their x-gradients.

Remark. (A2.4) is just a condition on the rate of convergence of an

expectation to a 'stationary' value as t -* (A2.3) and (A2.5) are just

conditions on the rate of convergence of a conditional expectation to an

cxpecation as the 'time difference' goes to infinity. They are easily shown

to be satisfied under appropriate mixing conditions on t(.) [7, Chapter 4].

They arc similar to conditions used in [13,14] for weak convergence of a

sequence of Markov processes.

Define b(x,a) = G(x,a) + F(x) and the operators Am (when m is a feedback

relaxed control m.: see the Appendix for the definition) and A' and Au as

follows:
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Ac'f(x) = f'(x)b(x,o) + - E
X ~2 i ij U i~

Amf(x) = f Acf'(x)mx(da),

and for Au, we replace the r in the definition of A' by the classical control

function u(.).

A2.6. The martingale problem for operator A' has a unique solution for

each relaxed admissible feedback control m,(.), and each initial condition.

The process is a Feller process. The solution of (2.1) is unique in the weak

sense for each E > 0.

Remark. The uniqueness and existence is guaranteed if the operator Am

is that for the system

(2.2) dx = b(x)dt + x j + [ o ,x)dv4 ]
0 0

where oc' ) 61 for all x and some 6 > 0, b(.) and o(.) are Lipschitz

continuous and b(.,-) is merely bounded and Borel measurable and the

dimensions of (the vector) b and (square matrix) oo' are equal.

Let M denote the space of probability measures on the Borel sets of R' x

U, with the 'weak compact' topology where Pn " P iff ff(x,=)Pn(dxd)

Jf(x,a)P(dxda) for each continuous function f() with compact support. For

an admissible relaxed control for (2.1) and (1.1), resp., define the (occupation)

measure valued random variables P',((.) and P'(.) by, resp.,

-J. -
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P.,€(B x C) = - ( ( mt(C)dt,T T fo (.x (t)u

P (B x C) = J(x(t)4Bnt(C)dt.

We sometimes write mE(-), if the model is (2.1). If the relaxed control for

(1.1) is of the feedback form (mx or u(x)) , then we use the modification

P'(B) I . I()GftT Io (x(t)EBPd

(or with u replacing m), and similarly define P',(B), P'.c(B) for feedback

m(-) and u(-).

Let mE(-) be 61-optimal (in any sense) and let us(-) be defined by (A2.8).

A2.7. The set of random variables (xE(t), e > 0, t < -") is tight.

Remark. The tightness in (A2.7) implies the tightness of the set of ,'

valued random variables (p'-(.), c > 0, T -c us or above m((.)). Under aTt

stability condition on the limit equation (1.1) in the absence of control, and

some other conditions, the tightness can be proved by a 'perturbed Liapunov

function' method [5]. Of course, if the state space is compact, as for the

'Liapunov exponent' problem in Section 4, then (A2.7) always holds. In lieu

of a 'universal stability condition', a condition on the minimum (over the

control values) magnitude of the cost k(.) as lxi -' - was used in [3] (for the

model (1.1)) to get that an optimal control for that model is 'stabilizing'.

Perhaps a similar idea can be used here. But this point won't be pursued.

A2.8. For each 6 > 0, there is a continuous 6-ontimal control for (1.1) and

(1.2), for which the martingale problem has a unioue solution for each initial
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condition. The solution is a Feller process and there, is a unique invariant

measure ju(u 6 ,.). [u6 is 6-optimal in the sense that (u 6 ) ( 57(mx) + 6 for the

stationary initial condition for any..feedback relaxed control m= for which

there is a stationary solution to the associated martingale problem.]

A.2.9. k(.) is bounded and continuous.

Remark. The existence of such smooth 6-optimal controls is dealt with in

[71. It will exist under an appropriate stability condition on the uncontrolled

(1.1), and either non-degeneracy of (1.1) or for a system of the form (2.2) [7].

It turns out that /(u 7 ) = 5(u 7 ) w.p.l (this follows from the method of proof of

Theorem I below, or from the method in [3], under the conditions there).

A2.10. (Gaussian case). t(.) is a stable Gauss-Markov process with a

stationarv transition function and let F(x, ) = F(x)t, Go(x,) = Go(x),, where

G, Go, and F satisfy the (in x) smoothness in (A2.1) - (A2.2). Define F(.) and

a(.) as in (A2.4). [Note: the other parts of (A2.3) - (A2.5)) all hold.]

Theorem 1. Assume either (A2.1) to (A2.9) or (A2.6) IQ (A2.10). Then

(l.8a) and (l.8b) hold.

Proof. We do the 'Gaussian' case only. The other case is treated in

essentially the same way. Let " be a (countable) measure determing set of

bounded continuous functions which have continuous second partial derivation,

and are constant for large lxi. Let mc( .) be the relaxed control in (A2.7). Define

the test function perturbations (the change of scale T/ -- T yielding the right

sides of the equations below will be used frequently and often without specific

%
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mention)

fO(X,t) =JE~f,'(x)G 0 (x,E(T))dT E" f '(x)Gjx,t(T))dT -(2j,1tj

f (X,t) =JE' f,'(X)F(XX(T))dT/( Et' f '(X)F(X, t(T))T =(~ tj

t t/C

-f If ~~ )~ , £ s) I ~ , £ T

=(lt -C2 JT/E dsE If (X)F(X, k"(s))1.,F(X,t "(T))

-E[f.'(x)F(x.A(S))1]'F(x,t(T))) = O(F 2)IRt6(t) 2 + 1].

The jt (t)j terms come from the Gauss-Markov property.

Dcfinc

2
fE(t) = f(x£(t)) + E fO(xE(t),t).

i=O

The operator A'E and its domain D(A' ') is defined in the Appendix. By

a dircct calculation, using the correlation and conditional expectation

properties of the Gauss-Markov process t() we get that f(xE(.)) and the

f'E~ (-,-)are all in £D(Am.£), and

AmC, Cf(XI(t)) = f,gX1(t))i£E(t)

Am+ J' x()t -fE(x~)f(x(t)G(x(t) £s)x£t s

0.

+ ds/.
* . ~ ~ ~ % %'~ >~t'
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, f(xE(t),t) - -fe(x(t))F(xE(t),,,Et)),E

+ J'ds [Et f,(x'(t))F(xE(t),tE(s))]]'i(t)/E,

and similarly for Am E'f"(xE(t),t). See the very similar calculation in [7,

Chapter 4] or in [15] where the dynamical terms depend smoothly on x, and

are right continuous in t.

We have

(2.3a) If(xE(t)) - f((t), = O(C)[ItI(t)l 2 + 1].

By adding the AmEEfE(to t Am 'Ef(xE(t)), subtracting from Am f(xE(t)) and

cancelling terms where possible we get

(2.3b) 1.*m(-fE(t) - Am f(xE(t))l = O(()[IR (t)13 + 1].

All the O(E) are uniform in t, c, w. By equation 4 of the Appendix (with our

f( replacing the q there), the function

(2.4) M (t) = fI(t) - fE( 0 ) - J n fm"f(s)d s
o0

is a zero mean martingale. We next show that M(t)/t E 0 as t and c - 0

in any way at all.

Write (where [t] denotes the greatest integer part of t)
(2.5) Mf (t) 1 lh

1[(Ml (t) - M(([t])) + M(0)] + - [ [M (n+l) - M((n)].
t tt n =

Using the fact that f(.) is bounded and (2.3), (2.5) and the martingale

property of ME(.), we get that E[ME(t)/t] 2 = 0(l)/t. The fact that M(/t,

ft(t)/t and f'(0)/t all go to zero in probability as t - * (uniformly in E)

go to zro N
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together with (2.4) and the second line of (2.3) implies that as t -' , and E -, 0,

(2.6a) Am f(xc(s))ds/t - 0.
0

By the definition of P ?' (.), (2.6a) can be written as

(2.6b) f Aaf(x)P-,((dxdcx) -, 0, as T -. and e -. 0.

Now, let the control be the classical control function u6 (.), and choose a

weakly convergent subsequence of the set of random variables {P.(.), E, T)B Tn'

(and also that 1 j Au 6 f(xc(s))ds - 0 w.p.l for all f(-) E T), indexed by en, Tn

and with (random) limit denoted by ;i(.). We let the limits 'A(.) be defined on

some prolability space (fr, P, T) with generic variable . Now, (2.6b) implies

that

(2.7) f Au f(x)i(dx) = 0, P-almost all i.

Since our class cf f(-) is measure determining, (2.7) implies that almost all

realizations of ;i(-) are invariant measures for (1.1) (under u6 ). [This is

proved by a slight extension of Prop. 9.2 of [81.] By uniqueness of the

invariant measure, we can take I(u 6 ,.) = (.) for all i, and the limit P(.) does

not depend on the chosen subsequence en, Tn. Furthermore, by the definition

of P. 6,((.)

k(x (s),u S(x£(s))ds/t = fo k(x,uB(x))Pu 'c(dx)
o 0f k(x'u 5 (x))u(u6 'dx) = 7u)
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Next, choosc a weakly convergent subsequence of (PI .E(.),E,T) (and also

such that (2.6a) - 0 w.p.l for all Q(-) C: T) indexed by en Tn, and with limit

denoted by P(.) (again, defined on some probability space ((I, P, T)). For each

i, we can factor P(.) as P(dxda) = m,(da)udx). We can suppose that the m.(B)

are x-mrcasurablc for each Bore! B and i.

By (2.6), for all f(-) E T,

(2.8) f Acf (x)m.(doo;u(dx) = 0 for P-almost all w

This implies that (for a.aiw-), p(-) is an invariant measure for the process (1.1)

with relaxcd fccdback control mx(.). As above we also have

(2.9) f k(x,a)mx(da)gudx) =lim 'YT(m) =(m
,Tn n

But, by the 6-optimality of u6 () for almost all U we have 7(m x) 0 7(u) -

Since this is true for all the limits of the tight set (P' E . );c,T), (1.8b)

follows. Q. E. D.



3. Altcrnativc Conditions

In this section we redo Theorem I under somewhat different conditions.

The perturbed test function is only 'first order' here and (2.3) won't hold. But

similar results are obtained via a direct averaging method of the type

introduced in [5, Chapter 5]. We will use either bounded 'mixing' or Gaussian

noise, as in Section 2, and subsets of the following conditions. Let E, denote

the expectation given t(s), s ( t.

A3. 1. ~()is bounded. and right continuous Go(.,) (,) F(.,) F.(.)

are continuous.

A 3.3. itGE(Fx( t)(s)-d0,

t

a3r 4 Thun er are continuous unF.), on. such that wit 0-c an nfom

A33.Iftx) E fF(xq) - P a.(xf x)

we .4 h hraveotnuu () () ubta ih Oiie N

A~~~~~ ~~~ A~) ,'f) Ex),~f,,()

for each x U. t "nd T -
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A3.5. V-.) is a stablc Gauss-Niarkov process. with a stationary transition

function. and F(x,t) =F(x)t, G,(x,) = G,(x), and F(.), G(-,.) and Go(-) hiave

the smoothness of (AllI). [We continue to define F(.), a(.) and A0 as in

(A3.4), when (A3.5) is used.]

As in Section 1, set A '(x) = f ,(x)G(x,a) + A f(x), and b(x,a) = G(x,a) +

F(x).

Theorem 2. Assume (A2.6) IQ (A2.9) and either (A3.1) Lo- (A3.4) or else

(A3.5). Then (1.8a) and (1.8b) hold.

Proof. Let f(-) be as in Theorem 1. We use the 'direct averaging first

order perturbed test function method' of [5, Chapter 5]. [9], [1], but thc

development here is self contained. ]Define fE(x,t) as in Theorem I and set

f ((t) = f(xE(t)) + ff(x'(t),t). Then, (write x for xc(t) for convenience hcre)

fE( E :DA- and

ArrEfE(t) = f,(x) [f G(x,)m (d ) + G0(xmlmt)]

+ -jJtds[Ef I(x)F(x,tE(s))],I F(xjE(t))

+ terms of order O(j)[JZE(t)j 2 + Ij.

(See the expressions given above (2.3).) Using the scale change s/( 2  s, the

second term can be seen to be bounded in mean square for the bounded noise

case and O(1)[I~c(t)12 + 11 in the Gaussian case.

Define the martingale
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MC(t) = fl(t) - f'(O) - Jh A-mEfE(S)ds.
0

If

p
(3.1) M6(t)/t -0 as e -0, t

then as in Theorem 1, we have

f nCEfI (s)ds/t 0, as c -'0, t--

Ao

If we also have that

(3.2) i J [AmE EfE( s ) - Am Cf(xE(s))]ds - 0, as e-, 0, t-.

(and also for u5 used in lieu of mE(-)) then the proof can be completed as in

Theorem 1. Thus, we need only show (3.1) and (3.2).

To get (3.1), we use the representation (2.5). The martingale difference
Mc(n+l) - M6(n) equals

fc(n+l) - fE(n) - fn+ ds [f,(x'(s))f G(x6(s),a)m,(da) + Go(xE(s), E(s))J(3.3)n I+1
+ dsO(l)[1RE(s) 2 + 1].

4 n

Since the mean square value of (3.3) is bounded uniformly in n, w, e, we get

that EIMc(t)) 2/t = O(1/t) and (3.1) holds, exactly as for Theorem 1.

We now prove (3.2). To sitalify th tLrof, wet a=o the terms

J"G(x,cx)mE(dc) and Go(xj). The first dropped term causes no problems (as in

Theorem 1) and the second is dealt with by an averaging method similar to

that employed below. Now, we have



iJt

0it! ds Jdu E:f'X()Fx()teu),FXt()/E

(3.4) + negligable terms

=-J ds Jdu E.I I~ (s))~)),'

+ negligabic terms.

where thc negligeable terms go to zero in the mean square sense as C - 0.

Henceforth, for simplicity, we consider the scalar case and work with only the

term fxx(x)F(x,k(u))F(x,t(s)) in (3.4). Write t = NA for integer N and A > 0.

Define

OEx's) =Jdu Ef,.(x)F(x,t(u))F(x,t(s)).

Then the desired term in (3.4) can be written as

N E 2 g(iA+A)/ E2

r- ft ds (EAQ1(X( 2S),S) -Q(~Es )

(35 !..N f2 J(iA+A)/(
N+ / &Q6(x"(c2s),s)ds.

i AQ1( 12)S - A/E2 (,I

Since EjEeA~x(s,)- ~x(5s is bounded uniformly in s, f and

A, the first set of summands in (3.5) are martingale differences with

uniform])- (in e, N, t) bounded mean square values. Thus the first sum is

0(1/N) and goes to zero in probability as N auniformly in c, t. By [5,

Chapter 3, Theorem 4, Part 1], and the uniform integrability of (11 1. It,(t), 6

> 0, t < -), the sequence (x6 (iA+.) - xl(iA), i, A > 0, c > 0) is tight in D[0,")

p.j *.1 1 %7, V
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(Skorohod topology). Because of this, we can replace the x (C2s) in the ith

summand of the second term in (3.5) by xE(iA) for all i, and only alter the sum by

an amount which goes to zero in probability (uniformly in c and N) as A - 0.

Doing this replacement and using either the Gaussian property (A3.5) or

else (A3.4) for the bounded noise case, and the continuity of F(-,) (uniform

in t in the bounded noise case) and the continuity and compact support of

f,(-) yields that the second sum in (3.5) and

N (iA+A)/

(3.6) -E ds fXX(x'(iA))a(xE(iL))(3.6) N i A Jia/C 2

have the samc limit in probability as N , A -0. - 0, NA . We next

use the tightness of (xE(iA + -) - x((i6), i, A > 0, c > 0) again to replace the

x((iL) in (3.6) by x(( 2 s), and get the same result; namely that the limit in

probability is the same as N - , A - 0, c - 0, NA - . Finally, repeating the

procedure approximation procedure used from (3.5) on for the various

neglected terms yields (3.2). Q.E.D.
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4. Extensions

Discrete time problem. There are direct extensions to the discrete

parameter model
(4.1) XEn+ = x= n +  r G(Xna)m (d a ) + cG0(Xn [n) + vT F(XnE).

n f n'n On'n n'n

In both (4.1) and (2.1), we can allow some 'state dependence' of the noise --

(cf, the 'Markov' dependent type used in [5, Chapters 4.4 or 5.5].)

Atoroximate non-linear filtering. In the following two applications, there is

no control. In Section 7 of [10], an 'approximate' non-linear filtering problem

was dealt with, where the system driving and observation noises were wideband.

It was shown (under a condition concerning the uniqueness of a certain invariant

measure) that the average error (using the notation of that paper)

(4.1) lim ' fJ E[4O(xE(t)) - (p1(t),O)]2dt
El T 0

converged to what one would get if the true optimal filter were used on the

'limit' process. Here xE(.) is the state of the 'signal system' (say, of the form

(2.1)), 0.() is bounded and continuous, and PE(.) is the measure valued output

(not necessarily the conditional distribution) of the 'approximate' filters used

in [12]. Via the technique of this paper, similar results can be obtained if the

E in (4.1) were dropped. This is useful, since we would normally filter only

one path -- over a long time -- and the use of the expectation might give an

inappropriate measure of the filter performance.

Liaounov exoonents for wide bandwidth noise driven systems. The theory

of Liapunov exponents is well developed for systems of the form

..- 005 &K
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k
(4.2) dx = Ax dt + E Bix o dw.ii=I

where thc 'o' denotes that the stochastic integral is in the 'Stratonovich' sense

and where the w,(-) are real valued and mutually independent standard

Wiener processes [11]. The 'Stratonovich' sense integral is used to be

consistent with the usage in [11] and because it simplifies the identification of

the limit process and its 'projection' below in this case. Of practical interest

are the convergence properties of numerical methods of evaluating these

exponents, as well as the study of the asymptotic behavior of wideband noise

driven svsterns

k
(4.3) x' = Axe + E Bi xt,

i=l1

via the method of Liapunov exponents. In (4.3), the k(.) are orthogonal and

scalar valued processes. Of particular interest is whether the exponents for

(4.3) converge to those for the limit system (which will be of the general form

of (4.2)) as - 0.

Under the conditions of Theorem 2 on I(.) = (./E 2 ), the above

orthogonality condition, and the normalization

fl [ T ds f'Etii(s)ii(u)du2
K tTds "*I

in probability as t and T go to *, the x(.) of (4.2) is the weak limit of (4.3), if

the initial conditions converge. We can assume this normalization to hold in

general, since otherwise we absorb the 'constants' into the Bi in the obvious

way.

Define y = x/Ix. Then

...................
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y = x/xl - x[x'xI/Ix 132

and

(4.4) yE = AyE +iE BiyE t-y[y'Ay] -y = k Biyk

Assume the noise conditions of Theorem 2. Then, it is not hard to show thath

P{xE(s) 0 0, any s ( T) = I for all e, T. r

Of interest is the calculation of quantities such as lim EfJq(yE(s))ds/t for I
bounded and continuous q(.). In the Monte Carlo evaluation of the limit, one

often uses,
(45)f q(-yIE(s))ds ht o

for large t and some small E, and it is of interest to know wvhether or not the

convergence is to the correct limit and whether it is uniform in E and t in the

sense of (l.8a). [An alternative is of course to fix T < - and approximate

0JTq(yE(s))ds/T for small c by taking many independent runs and averaging.

But, the 'uniformity' questions still arise.]

Define y(t) = x(t)/Ix(t)l and

q(y) yIAy + - E [y'(B + Bi)BiY -(yIBiY)2],
2 i=1i + 1 By-('i)]

and assume that y(.) has a unique invariant measure on the sphere (this is

true under a Lie algebraic condition on the set (A, B, i ( k) [ II]). Then [I]

the (maximal) Liapunov exponent is the limit (which is a constant w.p.l)t
(4.6) lim q(y(s))ds/t.t 0

1
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One is interested in whether (4.5) converges to (4.6) as c - 0 and t

By Theorem 2 (x(.),yf(.)) * (x( .),y( -)) (Skorohod topology), and the weak

limit process y(-) is characterized completely by the correlation functions of

the i(. Let p(.) denote the assumed unique invariant measure for y(-).

Then

(4.7) 1 , q(y (s))ds f q(y)y(dy), as c - 0 , t - ,

and the limit value is just the (maximum) Liapunov exponent for x(.). The

general method is applicable to a wide variety of noise processes and can

readily be extended to yield convergence of various numerical approximations

to the (maximal) Liapunov exponent for (4.2), via use of either a discrete

time approximation to (4.2) or the various interpolations which can be used to

approximate the stochastic integrals.

'Jnm

J.A

SD€
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Appendix

Dcfinition. Let U be a compact set in some Euclidean space. Let the

w(.) in (1.1) be a Wiener process with respect to a filtration it}. A measure

valued (a measure on the Borel sets of U x [0,*)) random variable m(-) is an

admissible relaxed control if ff'f(s,,)m(dsda) is progressively measurable for

each bounded and continuous f(-) and m([O,t] x U) = t. If m(.) is admissible,

then therc is a derivative mr(-) (defined for almost all t) which is non-

anticipativc and

tt

f(s,a~m(dsda) = ds f(s,a)m,(da)

for all t w.p.l. Sometimes we use the 'feedback' relaxed control (which we

write as mx(-)) which is a measure on the Borel sets of U for each x and

mx(B) is Borel-measurable for each Borel B. The mt(-) and m.(-) will also be

referred to as relaxed controls.

An admissible relaxed contol m(.) for (2.1) is also a measure valued

random variable (as above) but f;f(s,a)m(dsda) is progressively measurable

with respect to ({E), where VE is the minimal a-algebra measuring (tE(s), x6(s),
t t

s t). Also, we impose m([O,t] x U) = t. As above, there is also a derivative

mt(-), where the mt(B) are T measurable for Borel B. We sometimes use the

symbol mE(.) or mt(.) for the relaxed controls, when (2.1) is used.

Definition. Let q(.) be progressively measurable with respect to (Tt).

Suppose that there is a progressively measurable (with respect to ft)) g(.)

....... % I U % . % U..~*
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such that

(I)sup E~g(t)J < -, Ejg(t+s) - g(tOI - 0 as s a 0, each t,

EEQ(t+ 6) - q(t)
(2)sup E -(t) <

6>0

(3) lrn E' Eqt6) g qt) 0, each t.

Thcn we say that q(.) c 1)(A'-'), the domain of the operator A'- and

that Am-cq 9 . If q( -) C DXA.E), then 13, Chapter 3], [12],

(4) q(1) A joXq(s)ds

is a martingalL. T1his martingalc property will be heavily used in the proofs.

We definc Aa,E ob m, ihm concentrated at or, and 1, is defined in

* the obvious way.

The form given for Am,E in Theorem I satisfy (1) - (3) if f a(x,u)m,(da)

is right continuous w.p.l. Generally, since we are only concerned with the use

of A-m'Eq in an integral - to get the martingale property (4) - the given forms

work in generai. Alternatively, they are precisely what one gets via the

following procedure. Let t - NA& for integer N and consider the following

expression for (T')-progressively measurable q( -) with sup Elq(t)l <

N-1
(5) q(t) - q(0) - 1:E E5 (iA+A ~A]

i=0

Suppose that there is a progressively measurable g(-) such that the right side

of (5) converges to Jtg(s)ds in mean as A 0, for each t. Thcn

-1 x 1 11 1, S.! P .* . .U
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(6) q(t) - q(O) - g(s)ds

0A

is a zero mean (Tc)-martingale and we write E 1(AmE) and g =A~q

q%
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5. Convergence of Pathwisc Discounted Costs to the Ergodic Cost

In this section, we treat the discounted cost result (1.9). Again, thc exact

sense in which the mE(.) are $,'-optirmal is left a little vague. Since u6 (.) is

asymptotically 6-optimal, no matter what the mE(.) are. the pathwise costs are

(for small SM~ no better (modulo 26) than the costs for the mE(.), with an

arbitrary large probability.

Theorem 3. Under the condition5 of either Theorem I QL 2, the limits

(1.9) hold.

Remarks on the Proof. The proof is essentially the same as those of

Theorems I or 2, and we only remark on the differences. Wc use the

discounted occupation measures

P-lE(Bx C) -0 JCotl (t)EB)dt'

PWYBx C) - 0Jf C[x(t)B)mJ(Cdt

and analogously for the feedback control cases.

Then the cost can be written as

VE(mc) =Jk(x,*)P' E(dxda).

By the tightness conditions (A2.7), (A2.8), the (Pa' *E-) and (PU *() are

tight. Define

(5.2) fg(t) -8,e fl t)
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This will be used in lieu of the f(. in either Theorems 1 or 2. Wc have

(5.3) Arn'f~t 2e-OfEt + o8tm E(t).

Define the martingale

f() - f1(O) - J M mEfEs)ds

O $13,f ((t) - OfE((O) -- 0e' J(O + B.1'"f ()]S

As in Theorems I or 2

(5.4) 0 (Ji a JeOsAm f(xE(s))ds.

Thus

(5.5) 0 = 0 im A a~f(x)P-E,(dxda).

Again we choose weakly convergent subsequences of the (P0 E .}Or

(P"y() and continue as ir. the proofs of either Theorems I or 2 to get

IBI

Theorem 3
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